An in-depth analysis of polymer-analogous conjugation using DMTMM.
نویسندگان
چکیده
Combinatorial libraries have become increasingly popular in the field of functional biomaterials. One approach for creating diverse polymer libraries is polymer-analogous conjugation of functional groups to polymer scaffolds. In this study, we show that a water-soluble condensing agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), can be employed to conjugate two disparate model ligands, d-(+)-galactosamine (Gal) and agmatine (Agm), to the side chains of either poly(methacrylic acid) (pMAA) or poly(acrylic acid) (pAA) at various substitution ratios. The degree of substitution was found to be directly influenced by media pH, polymer concentration, structure of ligands, and polymer precursor. A nearly 2-fold increase in conjugation efficiencies for both ligands to pAA was achieved as compared to pMAA under identical conditions reaching up to 56% and 78% of Gal and Agm of total content, respectively. These two structurally similar polymers showed remarkably different performances, which reveals that the selection of a polymer precursor is crucial for the optimal design of polymeric libraries, particularly when complex structural ligands are involved. The approach employed provides a basis from which larger and more diverse combinatorial libraries of functionalized polymers with multiple moieties can be generated.
منابع مشابه
Verification of the PAGAT polymer gel dosimeter by photon beams using magnetic resonance imaging
Background: In this work investigation of the normoxic PAGAT polymer gel dosimeter such as sensitivity, the R2-dose response with post time and the percentage depth dose (PDD) of PAGAT polymer gel dosimeter have been undertaken. Materials and Methods: Using MRI, the formulation to give the maximum change in the transverse relaxation rate R2 was determined to be 4.5% N,N'-methylenbis- ...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملQuantification of Polyethylene Glycol Esters of Methotrexate and Determination of Their Partition Coefficients by Validated HPLC Methods
Conjugation of methotrexate (MTX) (MW 454) with different molecular weights of polyethylene glycol (PEG) including methoxy-peg (mpeg) 750 D and 5000 D and diol-peg 35000 D led to compounds that are physicochemically highly different from the parent compound, MTX. In this study, an HPLC system consisting of C8 column and UV detector (?=342 nm), using a mixture of 30:70 v/v phosphate-citrate buff...
متن کاملEffect of Gold Nanoparticle on Percentage Depth Dose Enhancement On Megavoltage Energy in MAGICA Polymer Gel Dosimeter
Background: Radiation-sensitive polymer gels are among the most promising three-dimensional dose verification tools and tissue-like phantom developed to date.Objective: The aim of this study is an investigating of percentage depth dose enhancement within the gel medium with used of conformal distribution gold nanoparticle as contrast agents by high atomic number material.Methods: In this work t...
متن کاملLiposome and polymer-based nanomaterials for vaccine applications
Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioconjugate chemistry
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2011